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Abstract. This  paper discusses an  approach for sensitivity  analysis of multibody dy- 
namics using spatial  operators.  The  spatial  operators  are  rooted in the function  space 
approach to estimation  theory developed in the decades that followed the introduction 
of the Kalman  filter. The  operators provide a mathematical framework for studying 
a wide range of analytical  and  computational problems associated  with  multi-body 
system  dynamics.  This  paper focuses on the computation of the sensitivity of the 
system  mass  matrix  and develops an  analytical expression for the same using spatial 
operators. 
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1 Introduction 

Kalman  introduced the notion of a state space, and a 
recursive filter [l] that computes the best  estimate of 
the  state from possibly noisy past measurements. The 
optimal  Bryson [2] smoother  computes the best state 
estimate using both  past  and  future  data. Although 
several authors seemed to have arrived at similar re- 
sults at approximately the same  time,  Kailath [3,4] 
was most likely the first to recognize many new tech- 
niques. He introduced the “innovations” approach, 
which when specialized to  state space  systems was a 
more  advanced way to  derive optimal linear estima- 
tors such  as the Kalman  filter. He also recognized 
the value to  estimation  theory of powerful mathemat- 
ical techniques  (Gohberg and  Krein) to factor positive 
operators  into a  product of two closely related  inte- 
gral  operators  with  triangular kernels. The function 
space  approach  reached  maturity  in  the work of Bal- 
akrishnan [5], who introduced  the elegant  methods of 
Hilbert  space. At the end of this  period, we knew 
how to easily solve very complicated linear filtering 
problems using linear  integral  operators,  operator fac- 
torization  methods,  and  triangular (Volterra)  factors. 
In the mid 1980’s, the  authors recognized [6-81 that 
the equations of mechanical  systems  had an almost 
perfect  analogy to  those of state space  linear  systems. 
Discovery of this analogy allowed the use in mechan- 
ics of very advanced  methods and  computational  ar- 
chitectures  (Kalman, Bryson,  Riccati, etc.)  that  had 
emerged from  estimation  theory. 

An  overview of the  spatial  operator  algebra  can be 
found in [9-111. Sensitivity  computations  are  essential 
in problems involving optimization,  linearization, non- 
linear analysis  etc.  In  practice, due  to  the complexity 
of the dynamics  quantities,  numerical  differentiation 
techniques are often utilized for such  sensitivity com- 
putations. Not only are  these techniques  non-robust, 
they  also  introduce  errors and  are  computationally ex- 
pensive. Analytical  techniques to compute  these sen- 
sitivities are typically limited to “small”  problems. In 
this  paper we describe  our recent results which use an 
analytical  approach for these  sensitivity  computations 
using spatial  operators. The promise of this  approach 
is that  it is applicable to large-dimensional systems, 
is accurate  and is computationally efficient. Example 
problems where such sensitivity  computations  are use- 
ful can  be found in [12,13]. For the purposes of this 
discussion we use a serial chain system  with single de- 
gree of freedom hinges as  our  example  problem. 

1.1 Overview of Spatial Operators for Se- 
rial  Chain Systems 

The aim of this subsection is to summarize briefly 
the essential  ideas  underlying  spatial operators lead- 
ing  up to  the Newton-Euler Operator  Factorization 
M(0)  = H$M$*H of the manipulator  mass  matrix. 
While this is done  here for a  serial  chain  manipulator, 
the factorization  results  apply to a much more  general 
class of complex joint-connected  mechanical  systems, 
including  tree  configurations  with flexible links and 



joints [14]. The recursive Newton-Euler equations  are  [6,16] 

V ( N  + 1)= 0; a(N + 1)= 0 
f o r k  = " - . 1  

V(k) = $*(IC + l ,k )V(k  + 1) + H*(k)b(k)  
a ( k )  = $*(k + l , k ) a ( k  + l)+H*(k)B(k) 

+a@) 
end loop 

Consider a  serial  manipulator  with N rigid links. The 
links are numbered  in  increasing  order from tip  to 
base. The  outer-most link is link 1, and  the inner- 
most link is link N .  The overall number of degrees- 
of-freedom for the manipulator is N .  There  are two 
joints  attached  to  the kth link. A coordinate  frame 
c?k is attached  to  the  inboard  joint,  and  another frame 
OC-, is attached  to  the  outboard  joint. Frame 01, is 
also the body  frame for the kth link. The ICth joint 
connects the ( k  + l)st and kth links, and  its motion 
is defined as the motion of frame 01, with  respect to 
frame 0:. When  applicable, the free-space motion 
of a  manipulator is modeled by attaching a 6 degree- 
of-freedom joint between the base link and  the iner- 
tial  frame  about which the free-space motion  occurs. 
However, in  this  paper,  without loss of generality and 
for the sake of notational simplicity, all joints  are as- 
sumed to  be single rotational degree-of-freedom joints 
with the kth joint  coordinate given  by 8 ( k ) .  Exten- 
sion to  joints  with  more  rotational  and  translational 
degrees-of-freedom is easy [15]. 

The  transformation  operator $ ( k ,  k - 1) between the 
Ok-1 and C?k frames is 

where l ( k ,  k - 1) is the vector from frame O k  to frame 
O ( k - ? ,  , and [ (k ,  k - 1) E R3x3 is the skew-symmetric 
matrix associated  with the cross-product  operation. 

The  spatial velocity of the kth body  frame 01, is 
V ( k )  = [w*(k) ,v*(k)]*  E R6, where w ( k )  and v ( k )  
are  the  angular  and linear velocities of 01,. With 
h ( k )  E R3 denoting the kth joint  axis  vector, H ( k )  = 
[h*(k) ,  01 E R1 x R6 denotes the joint  map ma- 
trix for the  joint,  and  the relative  spatial veloc- 
ity across the ICth joint is H * ( k ) b ( k ) .  The spa- 
tial force of interaction f ( k )  across the kth joint is 
f ( k ) =  [ N * ( k ) , F * ( k ) ] *  E R6, where N ( k )  and F ( k )  
are  the moment and force components respectively. 
The 6 x 6 spatial  inertia  matrix M ( k )  of the kth link 
in the coordinate  frame 01, is 

where m ( k )  is the mass, p ( k ) E  R3 is the vector from 
Ok to  the kth link center of mass, and J ( k ) E R 3 x 3  is 
the  rotational  inertia of the kth link about 01,. 1 3  is 
the 3 x 3 unit  matrix. 

f (0) =o 
for k = l - - - N  

f ( k )  = $@, IC - l ) f ( k  - l ) + M ( k b ( k )  
+b(k) 

T ( k )  = H ( k ) f ( k )  
end loop 

where T ( k )  is the applied moment at joint k .  The non- 
linear, velocity dependent  terms  a(k)  and b(k) are re- 
spectively the Coriolis acceleration and  the gyroscopic 
force terms for the kth link. 

The "stacked" notation 8= col 8 ( k )  E RN is used 
to  simplify the above recursive Newton-Euler  equa- 
tions.  This  notation [9] eliminates the arguments k 
associated  with the individual links by defining com- 
posite  vectors,  such  as 8, which apply to  the entire 
manipulator  system. We define 

{ I  

€ R N  V = col 

E R6N a = col 

E R6N b = col 

In  this  notation, the equations of motion are [6,7]: 

V = $*H*O; a = $*[H*B + U] (1.1) 

f = $[Ma + b]; T = H f  = MB+C (1.2) 
where the mass matrix M ( 8 )  = H$M$H*; 
C(O,b)= H$[M$*u + b] E RN is the Coriolis term; 
H = diag H ( k )  E RNxsN; M = diag { M ( k ) }  E { I  
~ 6 N x 6 N ;  and 4 E ~ 6 N x 6 N  

f I  0 . . .  0 \ 

\ $(%I) $(%2) . . .  I ) 
(1.3) 

with $(i, j )  = $(i ,  i - 1) . . . $ ( j  + 1, j )  for i > j .  The 
shift operator &4 E R6Nx6N is defined as 

0 0 0 0 

0 $(3,2) . . .  0 
$(2,1) 0 . .  . 0 

0 0 . . .  $ ( N , N -  1) 0 
(1.4) 



Using spatial  operators one  can  obtain  operator  factor- 
izations of the mass matrix  and  its inverse as follows: 

Identity 1.1 

M = H$M$*H* 
M = [ I  + H $ K ] D [ I  + H$K]* 

[ I  + H $ K ] - l =  I - H q K  
M-' = [ I  - H+K]*D-l[I  - H + K ]  

However we will not go any  further  in  this direction, 
but  instead will focus on the process of computing 
the sensitivity of spatial  operators. For the purposes 
of this discussion we have focused our attention on 
serial  chains  with single degree of freedom. We  will 
maintain  this focus in the rest of this  paper  though  the 
generalization to general tree topology systems  and 
hinges is straightforward. 

2 Sensitivity Computations 

Given the generalized coordinates vector 0 and a 
multi-valued function g ( 0 ) ,  our general approach to 
computing  its sensitivity will be to  first compute an 
expression for its  time derivative g(0) and  then use the 
relationship 

to  obtain from the ith column of ae . m 

2.1 The  Shift  operator S 

We first  introduce  and define the shift  operator, S E 
R6Nx6N consisting of R6x6 block elements  with the 
only non-zero ones being the identity R6x6 elements 
along the first sub-diagonal. Also we define the &ond 

notation such that  its value is 1 if cond is true  and is 
0 otherwise. 

Some useful properties of the shift operator 9 are de- 
fined in the following lemma. 

Lemma 2.1 : Properties of the shift operator S 

Given block diagonal  matrices A and B ,  the  following 
relationships  hold: 

(SAS*)SB = SAB 
(S*AS)S*B = $*AB 
AS*(SSS*) = ABS* 
AS(S*BS) = ABS 

(SAS*)(SBS*) = SABS* 
(S*AS)(S*BS) = S*ABS 

Special Cases: 

(SS*)SA = SA 
(S*S)S*A  = $*A 
(S*S)AS* = AS* 
(SS*)AS = AS 

SA(S*S) = SA 
S*A(SS*) = S*A 
A(S*S)S* = AS* 
A(BB*)S = AS 

Proof: Use  direct  evaluation  to  verify  these  identi- 
ties. I 

2.2 The w2, mi, and w2; operators 

We define W ( i )  as 

W ( i )  i s* [H*(k) ]  = ( 'l)z) ) (2.5) 

with 

Q is the block diagonal matrix defined as Q ( k ,  k )  = 
W(i)Sk<i 

We similarly also define the block diagonal  matrices 
IW and El$ as  having W ( i )  along the block diagonal  in 
the following manner: 

w" ( k ,   k )  = W ( i ) d k l i ,  and I@ ( k ,   k )  = H(i)dk=i 

There is an  important new quantity  in  this  result,  and 
it  has  a simple physical interpretation.  The  matrix W6 
is the 6N x 6N matrix whose elements are all zero, 
except for a single 6 x 6 block W ( i )  at  the ith location 
on the diagonal. The index i corresponds to  the joint- 
angle 8i with  respect to  which the sensitivity Mei is 
being taken. 

(2.8) 

Note that 

E = % + + ,  and % = S * E S  (2.9) 

Also, E@, @ and Wi are all  skew-symmetric. 

Lemma 2.2 : Composition of El$ etc.  with ar- 
bitrary matrices. 
Show  that for a  given  matrix X we  have  that, 



w 

Proof: These  identit ies are  established  by  simply  Also, 

and 
n n n 

fi = fis = Cwl,&i), fi6 = 
i= 1 i= 1 i= 1 

fi is the  spatial cross  product  matrix  associated  with 
the  spatial vector n ( k ) ,  where n ( k )  is defined as: 

(2.12) 

Define also the quantities f i ( k )  E R6 and fi E R6N as 
follows: 

f i ( k )  L? n(k)  - n(k  + 1) = H * ( k ) B ( k )  
(2.13) 

fi A col { f i ( k ) }  

Note that 

(2.21) 

I 

Lemma 2.4 : Sensitivities of $(k + I ,k ) ,  N ( k )  
and M ( k )  

fi = fis + f i 6 ,  and fis = S*fiS (2.14) 
Proof: Follow directly f r o m   L e m m a  2.3. I 

2.3 Sensitivities of q5(k + l , k ) ,  H ( k )  and 
M ( k )  2.4 Operator sensitivities of q5, H ,  M 

Lemma 2.3 : Time derivatives of $ ( k  + 1, k ) ,  Define the  operator A, as follows. 
H ( k )  and M ( k )  
W e   h a v e   t h a t  $(2,1) 0 . .  . 

A&(k) = f i ( k ) M ( k )  - M ( k ) f i ( k )  (2.15) A $ h = [  0 1 4(3,2)  

E " * @ )  = f i ( k  + l )H*(k)   (2 .16)  0 . . .  . . .  $ ( n + I , n )  ) 
$(k  + 1, k )  = f i ( k  + 1)$(k + 1, k )  (2.25) 

Note that 
- $(k + 1, k ) f i ( k  + 1)  (2.17) &@ = SA4 (2.26) 

Proof: Lemma 2.5 : Time Derivatives of Spatial Op- 

( 0 b ( k  + l ) l (k  --"- + 1, k )  ) (2.18) 
erators 

$(k + 1, k )  = 
0 

1 
A$ = fisA4 - A4fis (2.27) 

= (  0 

H * ( k )  = [w(k +gl)h(k)]  = f i ( k  + l )H*(k)   (2 .20)  = $fiJ$ + f i9$  - $0 (2.31) 

0 6 ( k  + l ) l (k  + 1, IC) - B(k + 1, k)G(k  + 1) 
0 2, = fi&, - &,fis (2.28) 

Ail=fiM"fi (2.30) 

(2.19) H *  fi,H* (2.29) 

Also, 
4 = $fi$ - $fisfp 



Proof: Eq. 2.27 can be derived b y  assembling  the 
component time derivatives of Eq. 2.25 from Eq. 2.17. 
Eq. 2.29  follows b y  applying  the identities in Lemma 
2.1 to Eq. 2.27. Eq. 2.29  and Eq. 2.30  are  simply 
matrix versions of Eq. 2.1 6 and Eq. 2.15  respectively. 
For Eq. 2.31  we  have that 

I 

Lemma 2.6 : Operator sensitivities of 4, H ,  M 

I 

Lemma 2.7 : Sensitivity of H+ 

Proof: 

3 Mass  Matrix Related Quantities 

3.1 Sensitivity of g5Mg5* 

Lemma 3.1 : Sensitivity of +M+* 

[+M+*]ei = [+@ + %]+M+* - +M+*[%+* + wl,] 
(3.39) 

Proof: 

3.2 Sensitivity of the Mass Matrix Mei 

Lemma 3.2 : Sensitivity of the Mass Matrix 
M i  = [H+M+*H*],; 

Me; = H+[@+M - M+*q]+*H* (3.40) 

Proof: 

Me; = He,+M+*H* + H+M+*H& + H[+M+*I0; H* 
= H+[@+M - M+*@]+*H* 

I 

The above formula in  Eq. 3.40 is closed-form, in the 
sense that  it explicitly computes the mass matrix sen- 
sitivity in terms of the operators +, M ,  and H ap- 
pearing in the mass matrix itself. That  the formula is 
closed-form is of extreme  importance,  because  it  im- 
plies that  the mass matrix derivatives  can be easily 
computed using operations  and  spatially recursive  al- 
gorithms similar to those used to compute the mass 
matrix itself. 

We state below without proof an  alternative expres- 
sion for the sensitivity of the mass matrix using artic- 
ulated  body  inertia  quantities. 

Lemma 3.3 : Alternative  expression for Me; 
Note that since +M+*H* = [I  + +KH]P+*H*, 

Me; = H+[% ( I  + +KH)P 
- P(I  + +KH)*Wi]+*H* 

I I 



? 

4 Concluding Remarks 

This overview aimed at  presenting the use of spatial 
operators for studying  sensitivities of multibody  dy- 
namics quantities.  The general approach is made pos- 
sible by the very high-level of mathematical  abstrac- 
tion allowed by spatial  operators. 
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